SOD vs One-class SVM


Unsupervised Anomaly Detection in High Dimensions: SOD vs One-Class SVM

Spencer Stirling

December 22, 2015

Introduction

In this article we test two algorithms that detect anomalies in high-dimensional data. For our purposes, "high-dimensional" means tens to hundreds of dimensions. Our results might generalize to "very high-dimensional" ($100\text{,}000$ dimensions is commonly seen in NLP and image processing), but we have not carefully experimented there.

Since we rarely have training data (nor even know what we are looking for), we are only interested in unsupervised algorithms.

The first algorithm, Subspace Outlier Degree (SOD) kriegel2009, is an unsupervised local anomaly detector. "Local" means that points are compared against their nearest neighbors (not against the entire dataset). The appeal of SOD is that it overcomes the curse of dimensionality that plagues distance and density-based algorithms such as Local Outlier Factor. For our experiments we use the implementation found in the ELKI framework.

The second algorithm, One-Class Support Vector Machine scholkopf2001, is a semi-supervised global anomaly detector (i.e. we need a training set that contains only the "normal" class). However, since SVM decision boundaries are soft, it can be used unsupervised as well.

We experiment with this, as well as two variants ("eta" and "robust") that were recently proposed amer2013 explicitly for unsupervised applications. We use the implementation in RapidMiner (which leverages a modified version of libsvm underneath).

All scripts and datasets can be obtained from the github repo.

TL;DR

Surprisingly, we found that the ordinary one-class SVM produced the best results out of all of the algorithms tested, even unsupervised. It was also the fastest. The performance of the other algorithms was as follows:

  • robust SVM was unreliable
  • eta SVM quality was competitive, but it was slightly slower and is not widely implemented
  • SOD quality was competitive as long as the parameter $\text{snn}$ was tuned optimally. However, it was much slower

For SOD we observed a curious phenomenon: the optimal parameter tuning seems to be

$$\text{snn}\gtrapprox\text{no. outliers in the dataset}$$

In real datasets we usually do not know how many outliers to expect, hence it is difficult to tune SOD in practice.

For SVM we only studied the RBF kernel. Two settings for the parameter $\gamma$ were investigated:

  1. "automated gamma tuning" as was proposed in evangelista2007
  2. the simple heuristic $\gamma=\frac{1}{\text{no. of datapoints}}$

Again, our results were surprising. We found that, although automated tuning helped for some datasets, it was disastrous in other cases. The simple heuristic is faster and more reliable.

sklearn Users Beware

Users of sklearn should be aware that leaving the default argument $\gamma=0$ enables automated gamma tuning (despite what the documentation says). Since we found that automated tuning was unreliable, we recommend explicitly setting the value $\gamma=\frac{1}{\text{no. of datapoints}}$.

Also, although RapidMiner computes an "outlier score" that can be readily used, sklearn only returns the decision function. To compute the outlier score, first compute the maximum value of the decision function:

$$Q = \max_{x^\prime}\;\text{decision_function}(x^\prime)$$

Then

$$\text{outlier_score}(x) = Q - \text{decision_function}(x)$$

Data preparation

We prepare labelled datasets similar to those found in amer2013, and we add several more. Our procedure is to pick an "anomaly class" in each dataset and cull it to a small size compared to the other class(es).

name original source dim $N_\text{anomalies}$ $N_\text{normal}$ anomaly class(es)
ionosphere UCI 33 7 225 b
shuttle UCI 9 772 40867 2, 3, 5, 6
breast_cancer (Wisc. diag.) UCI 30 9 357 M
satellite UCI 36 59 3071 2, 4, 5
mouse ELKI 2 10 490 Noise
kddcup99_5000 KDD Cup 63 100 5000 all except normal
kddcup99_10000 KDD Cup 63 200 10000 all except normal
kddcup99_20000 KDD Cup 63 400 20000 all except normal
kddcup99_100000 KDD Cup 63 2000 100000 all except normal

Each categorical variable was converted to dummy variables (using get_dummies in python). This is included in the dimensionalities listed above.

All variables (including dummy variables) were then standardized to have mean=0, stddev=1.

Use Precision-Recall instead of ROC

Although the ROC curve is the most popular measure of classifier quality, it is much better to use the Precision-Recall curve when the dataset is highly imbalanced davis2006. The explanation is simple. Recall that ROC measures the true positive rate (sensitivity)

$$\text{TPR}=\frac{\text{TP}}{\text{TP}+\text{FN}}$$

versus the false positive rate

$$\text{FPR}=\frac{\text{FP}}{\text{FP}+\text{TN}}$$

When the negative class is much larger than the positive class (as happens in anomaly detection) then, even if the false positive rate is small, the actual number of false positives might be large compared to the number of true positives. The ROC curve would appear favorable, but the algorithm would be poor.

From now on we restrict our attention to the PR curve (and the area under the curve PR-AUC).

SOD quality depends on SNN

SOD depends on three parameters:

  • number of shared nearest neighbors $\text{snn}$
  • number of ordinary nearest neighbors $\text{knn}$ (not important, but must be larger than $\text{snn}$. We use $2*\text{snn}$)
  • a threshold parameter $\alpha$ (we use the default value $0.8$)

It is claimed in kriegel2009 that SOD is not sensitive to $\text{snn}$, provided $\text{snn}$ is sufficiently large (so there are enough nearest neighbors to compare against).

In our experiments, however, we do see sensitivity to $\text{snn}$. In the following graphs we plot the average quality (PR-AUC) versus $\text{snn}$ for each dataset. To provide context, the vertical line depicts the number of anomalies in each dataset.

Because of performance limitations we could not make a full parameter sweep on kddcup99_20000, and were unable to run SOD on kddcup99_100000 at all.


In [5]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

# SOD PR-AUC vs SNN (ionosphere) 
df = pd.read_csv('output_summary.csv', header=None, index_col=False, skiprows=3, nrows=5, usecols=[2,4])

fig = plt.figure(figsize=(5,3))
ax = fig.add_axes([0.12, 0.15, 0.8, 0.7])
ax.plot(df[2].values, df[4].values)
ax.plot([7, 7], [0, 1.1])
ax.set_xlabel('snn', fontsize=14)
ax.set_ylabel('PR-AUC', fontsize=14)
ax.set_ylim([0.0, 1.1])
ax.set_xlim([0, 101])
ax.set_title('SOD Precision vs SNN (ionosphere)', fontsize=16)
plt.show()



In [6]:
# SOD PR-AUC vs SNN (shuttle) 
df = pd.read_csv('output_summary.csv', header=None, index_col=False, skiprows=10, nrows=5, usecols=[2,4])

fig = plt.figure(figsize=(5,3))
ax = fig.add_axes([0.12, 0.15, 0.8, 0.7])
ax.plot(df[2].values, df[4].values)
ax.plot([772, 772], [0, 1.1])
ax.set_xlabel('snn', fontsize=14)
ax.set_ylabel('PR-AUC', fontsize=14)
ax.set_ylim([0.0, 1.1])
ax.set_xlim([24, 1501])
ax.set_title('SOD Precision vs SNN (shuttle)', fontsize=16)
plt.show()



In [7]:
# SOD PR-AUC vs SNN (breast_cancer) 
df = pd.read_csv('output_summary.csv', header=None, index_col=False, skiprows=17, nrows=5, usecols=[2,4])

fig = plt.figure(figsize=(5,3))
ax = fig.add_axes([0.12, 0.15, 0.8, 0.7])
ax.plot(df[2].values, df[4].values)
ax.plot([9, 9], [0, 1.1])
ax.set_xlabel('snn', fontsize=14)
ax.set_ylabel('PR-AUC', fontsize=14)
ax.set_ylim([0.0, 1.1])
ax.set_xlim([0, 101])
ax.set_title('SOD Precision vs SNN (breast_cancer)', fontsize=16)
plt.show()



In [8]:
# SOD PR-AUC vs SNN (satellite) 
df = pd.read_csv('output_summary.csv', header=None, index_col=False, skiprows=24, nrows=7, usecols=[2,4])

fig = plt.figure(figsize=(5,3))
ax = fig.add_axes([0.12, 0.15, 0.8, 0.7])
ax.plot(df[2].values, df[4].values)
ax.plot([59, 59], [0, 1.1])
ax.set_xlabel('snn', fontsize=14)
ax.set_ylabel('PR-AUC', fontsize=14)
ax.set_ylim([0.0, 1.1])
ax.set_xlim([0, 501])
ax.set_title('SOD Precision vs SNN (satellite)', fontsize=16)
plt.show()



In [9]:
# SOD PR-AUC vs SNN (mouse) 
df = pd.read_csv('output_summary.csv', header=None, index_col=False, skiprows=32, nrows=5, usecols=[2,4])

fig = plt.figure(figsize=(5,3))
ax = fig.add_axes([0.12, 0.15, 0.8, 0.7])
ax.plot(df[2].values, df[4].values)
ax.plot([10, 10], [0, 1.1])
ax.set_xlabel('snn', fontsize=14)
ax.set_ylabel('PR-AUC', fontsize=14)
ax.set_ylim([0.0, 1.1])
ax.set_xlim([0, 101])
ax.set_title('SOD Precision vs SNN (mouse)', fontsize=16)
plt.show()



In [10]:
# SOD PR-AUC vs SNN (kddcup99_5000) 
df = pd.read_csv('output_summary.csv', header=None, index_col=False, skiprows=39, nrows=5, usecols=[2,4])

fig = plt.figure(figsize=(5,3))
ax = fig.add_axes([0.12, 0.15, 0.8, 0.7])
ax.plot(df[2].values, df[4].values)
ax.plot([100, 100], [0, 1.1])
ax.set_xlabel('snn', fontsize=14)
ax.set_ylabel('PR-AUC', fontsize=14)
ax.set_ylim([0.0, 1.1])
ax.set_xlim([24, 401])
ax.set_title('SOD Precision vs SNN (kddcup99 5000)', fontsize=16)
plt.show()



In [11]:
# SOD PR-AUC vs SNN (kddcup99_10000) 
df = pd.read_csv('output_summary.csv', header=None, index_col=False, skiprows=46, nrows=5, usecols=[2,4])

fig = plt.figure(figsize=(5,3))
ax = fig.add_axes([0.12, 0.15, 0.8, 0.7])
ax.plot(df[2].values, df[4].values)
ax.plot([200, 200], [0, 1.1])
ax.set_xlabel('snn', fontsize=14)
ax.set_ylabel('PR-AUC', fontsize=14)
ax.set_ylim([0.0, 1.1])
ax.set_xlim([24, 401])
ax.set_title('SOD Precision vs SNN (kddcup99 10000)', fontsize=16)
plt.show()



In [12]:
# SOD PR-AUC vs SNN (kddcup99_20000) 
df = pd.read_csv('output_summary.csv', header=None, index_col=False, skiprows=53, nrows=5, usecols=[2,4])

fig = plt.figure(figsize=(5,3))
ax = fig.add_axes([0.12, 0.15, 0.8, 0.7])
ax.plot(df[2].values, df[4].values)
ax.plot([400, 400], [0, 1.1])
ax.set_xlabel('snn', fontsize=14)
ax.set_ylabel('PR-AUC', fontsize=14)
ax.set_ylim([0.0, 1.1])
ax.set_xlim([24, 425])
ax.set_title('SOD Precision vs SNN (kddcup99 20000)', fontsize=16)
plt.show()


Discussion

From the above graphs it is clear that the quality of SOD depends on the choice of $\text{snn}$. Interestingly, the optimal setting for $\text{snn}$ appears to be approximately the same as the number of anomalies in the dataset (or slightly larger).

Since in practice we won't know the number of anomalies to expect, we won't be able to tune $\text{snn}$ effectively. It is important to notice that the quality drops especially quickly if $\text{snn}$ is chosen too small.

SOD running time

Since quality depends on $\text{snn}$, we need to know how running time depends on $\text{snn}$. The plot below shows this relationship for three separate datasets: kddcup99 5000, 10000, and 20000. Running time appears to grow linearly $\text{O}(\text{snn})$ in each case.


In [20]:
# SOD running time (s) vs snn
df = pd.read_csv('output_summary.csv', header=None, index_col=False, skiprows=39, nrows=19, usecols=[2,5])

fig = plt.figure(figsize=(7,3))
ax = fig.add_axes([0.1, 0.15, 0.63, 0.7])
ax.plot(df[2].values[0:5], df[5].values[0:5], label="5000 pts")
ax.plot(df[2].values[7:12], df[5].values[7:12], label="10000 pts")
ax.plot(df[2].values[9:], df[5].values[9:], label = "20000 pts")
ax.set_xlabel('snn', fontsize=14)
ax.set_ylabel('Time (sec)', fontsize=14)
ax.set_ylim([-100, 2700])
ax.set_xlim([24, 401])
ax.set_title('SOD running time (s) vs SNN (kddcup99)', fontsize=16)
ax.legend(bbox_to_anchor=(1.44, 0.75), prop={'family': 'monospace'})
plt.show()


Likewise, we need to know how running time is affected by increasing the size of the dataset. Below we plot several curves with fixed $\text{snn}$ and varying data size. It turns out that the running time grows quadratically $\text{O}(n^2)$ in each case.


In [19]:
# SOD running time (s) vs # datapoints
df = pd.read_csv('output_summary.csv', header=None, index_col=False, skiprows=39, nrows=19, usecols=[2,5])

fig = plt.figure(figsize=(7.5,3))
ax = fig.add_axes([0.1, 0.15, 0.69, 0.7])
ax.plot([5000,10000,20000], df[5].values[0::7], label="snn=25")
ax.plot([5000,10000,20000], df[5].values[1::7], label="snn=50")
ax.plot([5000,10000,20000], df[5].values[2::7], label="snn=100")
ax.plot([5000,10000,20000], df[5].values[3::7], label="snn=200")
ax.plot([5000,10000,20000], df[5].values[4::7], label="snn=400")
ax.set_xlabel('# datapoints', fontsize=14)
ax.set_ylabel('Time (sec)', fontsize=14)
ax.set_ylim([-100, 2700])
ax.set_xlim([4900, 21000])
ax.set_title('SOD running time (s) vs #pts (kddcup99)', fontsize=16)
ax.legend(bbox_to_anchor=(1.32, 0.85), prop={'family': 'monospace'})
plt.show()


Discussion

Putting these together we see that SOD running time grows like $\text{O}(n^2\cdot\text{snn})$.

However, we already saw that we should scale $\text{snn}\gtrapprox(\text{no. of anomalies})$ to optimize quality. Since $(\text{no. of anomalies})\propto(\text{size of dataset }n)$, we conclude that we should scale $\text{snn}\propto n$.

So optimal SOD has time complexity $\text{O}(n^3)$. Below we will see that SOD is far more expensive than SVM when we compare them head-to-head.

One-Class SVM quality

We already mentioned that we are comparing three variants of one-class SVM: ordinary one-class SVM, eta SVM, and robust SVM. Although we could study other kernels, in our experiments we limited ourselves to RBF. Two settings for the parameter $\gamma$ were investigated:

  1. "automated gamma tuning" as was proposed in evangelista2007
  2. the simple heuristic $\gamma=\frac{1}{\text{no. of datapoints}}$

The regularization is bundled into a separate parameter $\nu$. The default value $\nu=0.5$ seemed to work well, but we did not systematically study this aspect.

In the graphs below we compare all six Precision-Recall curves for each dataset:

  1. eta SVM with automated gamma tuning
  2. eta SVM without automated gamma tuning
  3. robust SVM with automated gamma tuning
  4. robust SVM without automated gamma tuning
  5. ordinary one-class SVM with automated gamma tuning
  6. ordinary one-class SVM without automated gamma tuning

In [21]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import auc
%matplotlib inline

# process SVM PR curves
datasets = ['ionosphere', 'shuttle', 'breast_cancer_wisconsin_diagnostic', 'satellite', 'mouse', 'kddcup99_5000', 'kddcup99_10000']
for name in datasets:

    if name == 'kddcup99_5000':
        dirname = 'kddcup99'
        subdirbase = "outputsvm_5000"
    elif name == 'kddcup99_10000':
        dirname = 'kddcup99'
        subdirbase = "outputsvm_10000"
    else:
        dirname = name
        subdirbase = "outputsvm"

    eta = pd.read_csv('%s/%s_eta/pr.txt' % (dirname, subdirbase), header=None, index_col=False, skiprows=1)
    eta_no_gamma_tuning = pd.read_csv('%s/%s_eta_no_gamma_tuning/pr.txt' % (dirname, subdirbase), header=None, index_col=False, skiprows=1)
    robust = pd.read_csv('%s/%s_robust/pr.txt' % (dirname, subdirbase), header=None, index_col=False, skiprows=1)
    robust_no_gamma_tuning = pd.read_csv('%s/%s_robust_no_gamma_tuning/pr.txt' % (dirname, subdirbase), header=None, index_col=False, skiprows=1)
    one_class = pd.read_csv('%s/%s_one_class/pr.txt' % (dirname, subdirbase), header=None, index_col=False, skiprows=1)
    one_class_no_gamma_tuning = pd.read_csv('%s/%s_one_class_no_gamma_tuning/pr.txt' % (dirname, subdirbase), header=None, index_col=False, skiprows=1)

    eta_auc = auc(eta[0], eta[1])
    eta_no_gamma_tuning_auc = auc(eta_no_gamma_tuning[0], eta_no_gamma_tuning[1])
    robust_auc = auc(robust[0], robust[1])
    robust_no_gamma_tuning_auc = auc(robust_no_gamma_tuning[0], robust_no_gamma_tuning[1])
    one_class_auc = auc(one_class[0], one_class[1])
    one_class_no_gamma_tuning_auc = auc(one_class_no_gamma_tuning[0], one_class_no_gamma_tuning[1])

    fig = plt.figure(figsize=(12,5))
    ax = fig.add_axes([0.045, 0.1, 0.6, 0.8])
    ax.plot(eta[0].values, eta[1].values, label='eta              AUC=%f' % eta_auc, lw=2)
    ax.plot(eta_no_gamma_tuning[0].values, eta_no_gamma_tuning[1].values, label='eta_noauto       AUC=%f' % eta_no_gamma_tuning_auc, lw=2)
    ax.plot(robust[0].values, robust[1].values, label='robust           AUC=%f' % robust_auc, lw=2)
    ax.plot(robust_no_gamma_tuning[0].values, robust_no_gamma_tuning[1].values, label='robust_noauto    AUC=%f' % robust_no_gamma_tuning_auc, lw=2)
    ax.plot(one_class[0].values, one_class[1].values, label='one_class        AUC=%f' % one_class_auc, lw=2)
    ax.plot(one_class_no_gamma_tuning[0].values, one_class_no_gamma_tuning[1].values, label='one_class_noauto AUC=%f' % one_class_no_gamma_tuning_auc, lw=2)
    ax.set_xlabel('Recall', fontsize=14)
    ax.set_ylabel('Precision', fontsize=14)
    ax.set_ylim([0.0, 1.05])
    ax.set_xlim([0.0, 1.0])
    ax.set_title('SVM Precision-Recall (%s)' % name, fontsize=16)
    ax.legend(bbox_to_anchor=(1.6, 0.7), prop={'family': 'monospace'})
    plt.show()


Discussion

From the graphs it is clear that robust SVM (with or without automated gamma tuning) performs much worse on most datasets. Since it seems to be unreliable, we drop it from further discussion.

Now consider the effect of automated gamma tuning. Although it helps for the "ionosphere" and "mouse" datasets, results are mixed for the "shuttle" and "satellite" datasets. It actually hurts the "breast_cancer" results, and it really hurts the "kddcup99" results. Since it seems to be unreliable, we cannot recommend it.

So we are left comparing eta SVM versus ordinary one-class SVM (both with automated gamma tuning off). We see that the results are mostly comparable. Since one-class SVM is standard in libsvm, we see no reason to use the eta variant.

Head-to-head quality comparison: Optimal SOD vs One-Class SVM

In the graphs below we compare ordinary one-class SVM (automated gamma tuning off) against SOD (where $\text{snn}$ was tuned optimally for each dataset). We see that both algorithms are competitive, however one-class SVM seems to produce slightly better quality overall.


In [2]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import auc
%matplotlib inline

# process SVM PR curves vs SOD (optimal) PR curves
datasets = ['ionosphere', 'shuttle', 'breast_cancer_wisconsin_diagnostic', 'satellite', 'kddcup99_5000', 'kddcup99_10000']
for name in datasets:

    if name == 'ionosphere':
        dirname = name
        svmsubdirbase = "outputsvm_one_class_no_gamma_tuning"
        sodsubdirbase = "outputsod_10snn"        
    elif name == 'shuttle':
        dirname = name
        svmsubdirbase = "outputsvm_one_class_no_gamma_tuning"
        sodsubdirbase = "outputsod_1000snn"        
    elif name == 'breast_cancer_wisconsin_diagnostic':
        dirname = name
        svmsubdirbase = "outputsvm_one_class_no_gamma_tuning"
        sodsubdirbase = "outputsod_25snn"        
    elif name == 'satellite':
        dirname = name
        svmsubdirbase = "outputsvm_one_class_no_gamma_tuning"
        sodsubdirbase = "outputsod_250snn"        
    elif name == 'mouse':
        dirname = name
        svmsubdirbase = "outputsvm_one_class_no_gamma_tuning"
        sodsubdirbase = "outputsod_10snn"        
    elif name == 'kddcup99_5000':
        dirname = 'kddcup99'
        svmsubdirbase = "outputsvm_5000_one_class_no_gamma_tuning"
        sodsubdirbase = "outputsod_5000_100snn"
    elif name == 'kddcup99_10000':
        dirname = 'kddcup99'
        svmsubdirbase = "outputsvm_10000_one_class_no_gamma_tuning"
        sodsubdirbase = "outputsod_5000_200snn"

    one_class_no_gamma_tuning = pd.read_csv('%s/%s/pr.txt' % (dirname, svmsubdirbase), header=None, index_col=False, skiprows=1)
    sod = pd.read_csv('%s/%s/pr-curve.txt' % (dirname, sodsubdirbase), header=None, index_col=False, skiprows=2, sep=' ')

    one_class_no_gamma_tuning_auc = auc(one_class_no_gamma_tuning[0], one_class_no_gamma_tuning[1])
    sod_auc = auc(sod[0], sod[1])

    fig = plt.figure(figsize=(12,5))
    ax = fig.add_axes([0.045, 0.1, 0.6, 0.8])
    ax.plot(sod[0].values, sod[1].values, label='SOD (optimal)    AUC=%f' % sod_auc, lw=2)
    ax.plot(one_class_no_gamma_tuning[0].values, one_class_no_gamma_tuning[1].values, label='one_class_noauto AUC=%f' % one_class_no_gamma_tuning_auc, lw=2)
    ax.set_xlabel('Recall', fontsize=14)
    ax.set_ylabel('Precision', fontsize=14)
    ax.set_ylim([0.0, 1.05])
    ax.set_xlim([0.0, 1.0])
    ax.set_title('Optimal SOD and SVM Precision-Recall (%s)' % name, fontsize=16)
    ax.legend(bbox_to_anchor=(1.6, 0.7), prop={'family': 'monospace'})
    plt.show()


Head-to-head time comparison: Optimal SOD vs One-Class SVM

Finally, we compare the running time of one-class SVM (automated gamma tuning off) versus SOD (where $\text{snn}$ was tuned optimally for each dataset).

We already argued above that Optimal SOD running time grows as $\text{O}(n^3)$. Our experiments verify this. On the other hand, our experiments show that one-class SVM only grows as $\text{O}(n^2)$.

Clearly, Optimal SOD is much more expensive than one-class SVM.


In [3]:
# SOD optimal running time (s) compared to one-class SVM running time
df = pd.read_csv('output_summary.csv', header=None, index_col=False, skiprows=39, nrows=19, usecols=[5,12])

fig = plt.figure(figsize=(7.5,3))
ax = fig.add_axes([0.1, 0.15, 0.69, 0.7])
ax.plot([5000,10000,20000], [df[5].values[2], df[5].values[10], df[5].values[18]], label="optimal SOD")
ax.plot([5000,10000,20000], [df[12].values[5], df[12].values[12], df[12].values[14]], label="one-class SVM")
ax.set_xlabel('# datapoints', fontsize=14)
ax.set_ylabel('Time (sec)', fontsize=14)
ax.set_ylim([-100, 2700])
ax.set_xlim([4900, 21000])
ax.set_title('Comparison of SOD and SVM running time (kddcup99)', fontsize=16)
ax.legend(bbox_to_anchor=(1.5, 0.65), prop={'family': 'monospace'})
plt.show()


Conclusion

See TL;DR in the Introduction.

Bibliography

kriegel2009

Kriegel, Kröger, Schubert, Zimek, Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data, Lec. Notes in Comp. Sci. Vol. 5476, 2009, pp 831-38

scholkopf2001

Schölkopf, Platt, Shawe-Taylor, Smola, Williamson, Estimating the Support of a High-Dimensional Distribution, Neural Computation 13(7), 2001, pp 1443-71

amer2013

Amer, Goldstein, Abdennadher, Enhancing One-class Support Vector Machines for Unsupervised Anomaly Detection, ODD '13, 2013, pp 8-15

davis2006

Davis, Goadrich, The Relationship Between Precision-Recall and ROC Curves, Intl. Proc. on Mach. Learn., 2006

evangelista2007

Evangelista, Embrechts, Szymanski, Some properties of the gaussian kernel for one class learning, Proc. of the 17th Int. Conf. on Artificial neural networks, ICANN’07, pages 269–278. Springer, 2007


In [ ]: