``````

In [1]:

import ANN
import numpy as np
%matplotlib inline
import matplotlib
matplotlib.rcParams['figure.figsize'] = (18,7)
import matplotlib.pyplot as plt
from IPython import display

``````
``````

In [2]:

Input = [[0,0],[0,1],[1,0],[1,1]]
target = [0,1,1,0]

``````
``````

In [3]:

numLayers = 3
iterations = 5000
eta = 0.3

nn1 = ANN.FNN(numLayers, Input, target, eta=eta)

#output, error = nn1.train(iterations)

``````
``````

Class labels:set([0, 1])
Network constructed with 3 layers, learning rate is 0.3
Layers connected

``````
``````

In [4]:

target = nn1.__target__

error = []
output = []

``````
``````

In [5]:

plt.ion()

f, ax = plt.subplots(1,2)

im = ax[0].imshow(target, interpolation = 'none', cmap='viridis', origin='lower', aspect='auto', vmin= 0., vmax = 1.)
ax[0].set_xticks([0,1,2,3])
ax[0].set_xticklabels([str(inp) for inp in Input])
ax[0].set_yticks([])
ax[0].set_xlabel("Input")
ax[0].set_title('XOR Classification')

f.colorbar(im, ax=ax[0])

cost = ax[1].plot(error, c='k')
ax[1].set_title("Change in cost Function")
ax[1].set_xlabel("Iterations")
ax[1].set_ylabel("Cost Function")

f.canvas.draw()

``````
``````

``````
``````

In [6]:

for i in range(iterations):
out, e = nn1.train()
output.append(out)
error.append(e)
if i % 10 == 0: # Every 5th iteration
try:
im.set_data(out)
ax[1].plot(error, c='k')
display.display(f)
ax[1].cla()
display.clear_output(wait=True)

except KeyboardInterrupt:
break
plt.ioff()
plt.close()

``````
``````

``````