In [1]:
import ANN
import numpy as np
%matplotlib inline
import matplotlib
matplotlib.rcParams['figure.figsize'] = (18,7)
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from IPython import display
In [2]:
Input = [[0,0],[0,1],[1,0],[1,1]]
target = [0,1,1,0]
In [3]:
numLayers = 3
iterations = 5000
eta = 0.3
nn1 = ANN.FNN(numLayers, Input, target, eta=eta)
#output, error = nn1.train(iterations)
In [4]:
target = nn1.__target__
error = []
output = []
In [5]:
plt.ion()
f, ax = plt.subplots(1,2)
im = ax[0].imshow(target, interpolation = 'none', cmap='viridis', origin='lower', aspect='auto', vmin= 0., vmax = 1.)
ax[0].set_xticks([0,1,2,3])
ax[0].set_xticklabels([str(inp) for inp in Input])
ax[0].set_yticks([])
ax[0].set_xlabel("Input")
ax[0].set_title('XOR Classification')
f.colorbar(im, ax=ax[0])
cost = ax[1].plot(error, c='k')
ax[1].set_title("Change in cost Function")
ax[1].set_xlabel("Iterations")
ax[1].set_ylabel("Cost Function")
f.canvas.draw()
In [6]:
for i in range(iterations):
out, e = nn1.train()
output.append(out)
error.append(e)
if i % 10 == 0: # Every 5th iteration
try:
im.set_data(out)
ax[1].plot(error, c='k')
display.display(f)
ax[1].cla()
display.clear_output(wait=True)
except KeyboardInterrupt:
break
plt.ioff()
plt.close()