In [1]:
from sklearn import datasets as dts
import numpy as np
In [2]:
from sklearn.model_selection import cross_val_score
def error(X, y, estimator):
return cross_val_score(estimator, X, y, n_jobs=-1).mean()
In [3]:
data = dts.load_breast_cancer()
target = data['target']
data = data['data']
In [4]:
from sklearn import naive_bayes
In [5]:
error(data, target, naive_bayes.BernoulliNB())
Out[5]:
In [6]:
error(data, target, naive_bayes.MultinomialNB())
Out[6]:
In [7]:
error(data, target, naive_bayes.GaussianNB())
Out[7]:
In [12]:
data = dts.load_digits()
target = data['target']
data = data['data']
In [13]:
error(data, target, naive_bayes.BernoulliNB())
Out[13]:
In [14]:
error(data, target, naive_bayes.MultinomialNB())
Out[14]:
In [15]:
error(data, target, naive_bayes.GaussianNB())
Out[15]:
In [ ]: